Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664795

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Atrofia Muscular Espinal , Transdução de Sinais , Animais , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/imunologia , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644510

RESUMO

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Imunidade Inata , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita/imunologia , Hemócitos/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Larva/imunologia , Larva/parasitologia , Drosophila/parasitologia , Drosophila/imunologia
3.
Cell Rep ; 43(4): 113973, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507406

RESUMO

We identified and validated a collection of circular RNAs (circRNAs) in Drosophila melanogaster. We show that depletion of the pro-viral circRNA circATP8B(2), but not its linear siblings, compromises viral infection both in cultured Drosophila cells and in vivo. In addition, circATP8B(2) is enriched in the fly gut, and gut-specific depletion of circATP8B(2) attenuates viral replication in an oral infection model. Furthermore, circATP8B(2) depletion results in increased levels of reactive oxygen species (ROS) and enhanced expression of dual oxidase (Duox), which produces ROS. Genetic and pharmacological manipulations of circATP8B(2)-depleted flies that reduce ROS levels rescue the viral replication defects elicited by circATP8B(2) depletion. Mechanistically, circATP8B(2) associates with Duox, and circATP8B(2)-Duox interaction is crucial for circATP8B(2)-mediated modulation of Duox activity. In addition, Gαq, a G protein subunit required for optimal Duox activity, acts downstream of circATP8B(2). We conclude that circATP8B(2) regulates antiviral defense by modulating Duox expression and Duox-dependent ROS production.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , RNA Circular , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Replicação Viral , RNA/metabolismo , RNA/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Oxidases Duais/metabolismo , Oxidases Duais/genética
4.
J Biol Chem ; 299(12): 105414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918806

RESUMO

The proteins that coordinate the complex transcriptional networks of aging have not been completely documented. Protein 14-3-3zeta is an adaptor protein that coordinates signaling and transcription factor networks, but its function in aging is not fully understood. Here, we showed that the protein expression of 14-3-3zeta gradually increased during aging. High levels of 14-3-3zeta led to shortened lifespan and imbalance of intestinal immune homeostasis in Drosophila, but the decrease in 14-3-3zeta protein levels by RNAi was able to significantly promote the longevity and intestinal immune homeostasis of fruit flies. Importantly, we demonstrate that adult-onset administration of TIC10, a compound that reduces the aging-related AKT and extracellular signal-regulated kinase (ERK) signaling pathways, rescues the shortened lifespan of 14-3-3zeta-overexpressing flies. This finding suggests that 14-3-3zeta plays a critical role in regulating the aging process. Our study elucidates the role of 14-3-3zeta in natural aging and provides the rationale for subsequent 14-3-3zeta-based antiaging research.


Assuntos
Proteínas 14-3-3 , Envelhecimento , Proteínas de Drosophila , Drosophila melanogaster , Intestinos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Envelhecimento/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidade , Transdução de Sinais , Intestinos/imunologia
5.
J Virol ; 97(10): e0111223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796127

RESUMO

IMPORTANCE: Arboviruses, particularly those transmitted by mosquitoes, pose a significant threat to humans and are an increasing concern because of climate change, human activity, and expanding vector-competent populations. West Nile virus is of significant concern as the most frequent mosquito-borne disease transmitted annually within the continental United States. Here, we identify a previously uncharacterized signaling pathway that impacts West Nile virus infection, namely endothelin signaling. Additionally, we demonstrate that we can successfully translate results obtained from D. melanogaster into the more relevant human system. Our results add to the growing field of insulin-mediated antiviral immunity and identify potential biomarkers or intervention targets to better address West Nile virus infection and severe disease.


Assuntos
Endotelinas , Insulina , Febre do Nilo Ocidental , Animais , Humanos , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virologia , Insulina/metabolismo , Transdução de Sinais , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Endotelinas/imunologia , Endotelinas/metabolismo
6.
Science ; 381(6655): eadg5725, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471548

RESUMO

Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.


Assuntos
Acetobacter , Peptídeos Antimicrobianos , Proteínas de Drosophila , Drosophila melanogaster , Interações Hospedeiro-Patógeno , Microbiota , Providencia , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Interações Hospedeiro-Patógeno/imunologia
7.
Front Immunol ; 13: 903860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844546

RESUMO

Zika is a member of the Flaviviridae virus family that poses some of the most significant global health risks, causing neurologic complications that range from sensory neuropathy and seizures to congenital Zika syndrome (microcephaly) in infants born to mothers infected during pregnancy. The recent outbreak of Zika virus (ZIKV) and its serious health threats calls for the characterization and understanding of Zika pathogenesis, as well as host antiviral immune functions. Although ZIKV has been associated with activating the RNA interference (RNAi) immune pathway and altering host metabolism, in-depth studies are still required to uncover the specifics of the complex host-virus interactions and provide additional insights into the molecular components that determine the outcome of this disease. Previous research establishes the fruit fly Drosophila melanogaster as a reliable model for studying viral pathogens, as it shares significant similarities with that of vertebrate animal systems. Here, we have developed an in vivo Drosophila model to investigate ZIKV-mediated perturbed metabolism in correlation to the RNAi central mediator Dicer-2. We report that ZIKV infection reprograms glucose and glycogen metabolism in Dicer-2 mutants to maintain efficient replication and successful propagation. Flies that exhibit these metabolic effects also show reduced food intake, which highlights the complicated neurological defects associated with ZIKV. We show that ZIKV infection significantly reduces insulin gene expression in Dicer-2 mutants, suggesting an insulin antiviral role against ZIKV and a direct connection to RNAi immunity. Moreover, we find that the insulin receptor substrate chico is crucial to the survival of ZIKV-infected flies. These observations are remarkably more severe in adult female flies compared to males, indicating possible sex differences in the rates of infection and susceptibility to the development of disease. Such findings not only demonstrate that metabolic alterations can be potentially exploited for developing immune therapeutic strategies but also that preventive measures for disease development may require sex-specific approaches. Therefore, further studies are urgently needed to explore the molecular factors that could be considered as targets to inhibit ZIKV manipulation of host cell metabolism in females and males.


Assuntos
Drosophila melanogaster/virologia , Insulinas , Infecção por Zika virus , Zika virus , Animais , Antivirais/uso terapêutico , Drosophila melanogaster/imunologia , Feminino , Humanos , Insulinas/metabolismo , Insulinas/farmacologia , Insulinas/uso terapêutico , Masculino , Fatores Sexuais , Replicação Viral
8.
J Immunol ; 208(8): 1978-1988, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379744

RESUMO

The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.


Assuntos
Peptídeos Antimicrobianos , Proteínas de Drosophila , Drosophila , RNA Longo não Codificante , Animais , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Drosophila/genética , Drosophila/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
9.
PLoS Biol ; 20(1): e3001494, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990456

RESUMO

The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues.


Assuntos
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Macrófagos/fisiologia , Animais , Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Genes de Insetos , Genes fos , Análise de Sequência de RNA , Tetraspaninas , Fatores de Transcrição/metabolismo
10.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076390

RESUMO

Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Epitopos/imunologia , Anticorpos de Domínio Único/metabolismo , Animais
11.
Front Immunol ; 13: 1099637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741393

RESUMO

In Drosophila, the endoplasmic reticulum-associated protein degradation (ERAD) is engaged in regulating pleiotropic biological processes, with regard to retinal degeneration, intestinal homeostasis, and organismal development. The extent to which it functions in controlling the fly innate immune defense, however, remains largely unknown. Here, we show that blockade of the ERAD in fat bodies antagonizes the Toll but not the IMD innate immune defense in Drosophila. Genetic approaches further suggest a functional role of Me31B in the ERAD-mediated fly innate immunity. Moreover, we provide evidence that silence of Xbp1 other than PERK or Atf6 partially rescues the immune defects by the dysregulated ERAD in fat bodies. Collectively, our study uncovers an essential function of the ERAD in mediating the Toll innate immune reaction in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Imunidade Inata , Proteólise , Transdução de Sinais
12.
J Appl Toxicol ; 42(3): 450-474, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34486762

RESUMO

The use of graphene and multi-walled carbon nanotubes (MWCNTs) has now become rather common in medical applications as well as several other areas thanks to their useful physicochemical properties. While in vitro testing offers some potential, in vivo research into toxic effects of graphene and MWCNTs could yield much more reliable data. Drosophila melanogaster has recently gained significant popularity as a dynamic eukaryotic model in examining toxicity, genotoxicity, and biological effects of exposure to nanomaterials, including oxidative stress, cellular immune response against two strains (NSRef and G486) of parasitoid wasp (Leptopilina boulardi), phenotypic variations, and locomotor behavior risks. D. melanogaster was used as a model organism in our study to identify the potential risks of exposure to graphene (thickness: 2-18 nm) and MWCNTs in different properties (as pure [OD: 10-20 nm short], modified by amide [NH2 ] [OD: 7-13 nm length: 55 µm], and modified by carboxyl [COOH] [OD: 30-50 nm and length: 0.5-2 µm]) at concentrations ranging from 0.1 to 250 µg/ml. Significant effects were observed at two high doses (100 and 250 µg/ml) of graphene or MWCNTs. This is the first study to report findings of cellular immune response against hematopoiesis and parasitoids, nanogenotoxicity, phenotypic variations, and locomotor behavior in D. melanogaster.


Assuntos
Dano ao DNA , Drosophila melanogaster/efeitos dos fármacos , Grafite/toxicidade , Interações Hospedeiro-Parasita/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/fisiologia , Imunidade Celular/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fenótipo
13.
Cell Rep ; 37(13): 110150, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965418

RESUMO

Enteric pathogens overcome barrier immunity within the intestinal environment that includes the endogenous flora. The microbiota produces diverse ligands, and the full spectrum of microbial products that are sensed by the epithelium and prime protective immunity is unknown. Using Drosophila, we find that the gut presents a high barrier to infection, which is partially due to signals from the microbiota, as loss of the microbiota enhances oral viral infection. We report cyclic dinucleotide (CDN) feeding is sufficient to protect microbiota-deficient flies from enhanced oral infection, suggesting that bacterial-derived CDNs induce immunity. Mechanistically, we find CDN protection is dSTING- and dTBK1-dependent, leading to NF-kB-dependent gene expression. Furthermore, we identify the apical nucleoside transporter, CNT2, as required for oral CDN protection. Altogether, our studies define a role for bacterial products in priming immune defenses in the gut.


Assuntos
Infecções por Alphavirus/imunologia , Antivirais/farmacologia , Drosophila melanogaster/imunologia , Enterócitos/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nucleotídeos Cíclicos/administração & dosagem , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/virologia , Feminino , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Vírus Sindbis/imunologia
14.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576280

RESUMO

Avoiding excessive or insufficient immune responses and maintaining homeostasis are critical for animal survival. Although many positive or negative modulators involved in immune responses have been identified, little has been reported to date concerning whether the long non-coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway. Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly, the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila restore immune homeostasis in the later period of immune response. Overall, our study reveals a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a new insight into further studying the complex regulatory mechanism of animal innate immunity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Micrococcus luteus , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , RNA Longo não Codificante , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiologia , Homeostase , Imunidade Inata , Masculino , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Fosfoproteínas/genética , Regiões Promotoras Genéticas , RNA-Seq , Sepse , Transdução de Sinais , Frações Subcelulares , Receptores Toll-Like/metabolismo , Fatores de Transcrição/genética
15.
Genome Biol ; 22(1): 265, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521452

RESUMO

BACKGROUND: Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. RESULTS: In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. CONCLUSIONS: We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Elementos Reguladores de Transcrição , Alelos , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Regulação da Expressão Gênica , Código das Histonas , Mutação , Pseudomonas , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
16.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544850

RESUMO

In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Proteínas da Matriz Extracelular/metabolismo , Tolerância Imunológica/imunologia , Janus Quinases/metabolismo , Mutação , Tolerância a Antígenos Próprios , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas da Matriz Extracelular/genética , Glicosilação , Hemócitos , Janus Quinases/genética
17.
Nat Rev Cancer ; 21(11): 687-700, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389815

RESUMO

There is a large gap between the deep understanding of mechanisms driving tumour growth and the reasons why patients ultimately die of cancer. It is now appreciated that interactions between the tumour and surrounding non-tumour (sometimes referred to as host) cells play critical roles in mortality as well as tumour progression, but much remains unknown about the underlying molecular mechanisms, especially those that act beyond the tumour microenvironment. Drosophila has a track record of high-impact discoveries about cell-autonomous growth regulation, and is well suited to now probe mysteries of tumour - host interactions. Here, we review current knowledge about how fly tumours interact with microenvironmental stroma, circulating innate immune cells and distant organs to influence disease progression. We also discuss reciprocal regulation between tumours and host physiology, with a particular focus on paraneoplasias. The fly's simplicity along with the ability to study lethality directly provide an opportunity to shed new light on how cancer actually kills.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Drosophila melanogaster , Neoplasias/patologia , Microambiente Tumoral , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/imunologia , Humanos , Imunidade Inata , Neoplasias/imunologia , Neoplasias/mortalidade , Microambiente Tumoral/imunologia
18.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452330

RESUMO

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Dípteros/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Wolbachia/fisiologia , Adaptação Biológica , Aedes/enzimologia , Aedes/genética , Aedes/imunologia , Aedes/microbiologia , Sequência de Aminoácidos , Animais , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/imunologia , Dípteros/classificação , Dípteros/enzimologia , Dípteros/imunologia , Proteínas de Drosophila/química , Proteínas de Drosophila/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Evolução Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Wolbachia/genética
19.
J Immunol ; 207(6): 1616-1626, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34452932

RESUMO

The evolutionarily conserved immune deficiency (IMD) signaling pathway shields Drosophila against bacterial infections. It regulates the expression of antimicrobial peptides encoding genes through the activation of the NF-κB transcription factor Relish. Tight regulation of the signaling cascade ensures a balanced immune response, which is otherwise highly harmful. Several phosphorylation events mediate intracellular progression of the IMD pathway. However, signal termination by dephosphorylation remains largely elusive. Here, we identify the highly conserved protein phosphatase 4 (PP4) complex as a bona fide negative regulator of the IMD pathway. RNA interference-mediated gene silencing of PP4-19c, PP4R2, and Falafel, which encode the catalytic and regulatory subunits of the phosphatase complex, respectively, caused a marked upregulation of bacterial-induced antimicrobial peptide gene expression in both Drosophila melanogaster S2 cells and adult flies. Deregulated IMD signaling is associated with reduced lifespan of PP4-deficient flies in the absence of any infection. In contrast, flies overexpressing this phosphatase are highly sensitive to bacterial infections. Altogether, our results highlight an evolutionarily conserved function of PP4c in the regulation of NF-κB signaling from Drosophila to mammals.


Assuntos
Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Imunidade Inata , NF-kappa B/metabolismo , Fosfoproteínas Fosfatases/deficiência , Transdução de Sinais/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Inativação Gênica , Longevidade/genética , Longevidade/imunologia , Fosfoproteínas Fosfatases/genética , Interferência de RNA , Transdução de Sinais/genética , Regulação para Cima/genética
20.
PLoS Pathog ; 17(8): e1009846, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432851

RESUMO

The fruit fly Drosophila melanogaster combats microbial infection by producing a battery of effector peptides that are secreted into the haemolymph. Technical difficulties prevented the investigation of these short effector genes until the recent advent of the CRISPR/CAS era. As a consequence, many putative immune effectors remain to be formally described, and exactly how each of these effectors contribute to survival is not well characterized. Here we describe a novel Drosophila antifungal peptide gene that we name Baramicin A. We show that BaraA encodes a precursor protein cleaved into multiple peptides via furin cleavage sites. BaraA is strongly immune-induced in the fat body downstream of the Toll pathway, but also exhibits expression in other tissues. Importantly, we show that flies lacking BaraA are viable but susceptible to the entomopathogenic fungus Beauveria bassiana. Consistent with BaraA being directly antimicrobial, overexpression of BaraA promotes resistance to fungi and the IM10-like peptides produced by BaraA synergistically inhibit growth of fungi in vitro when combined with a membrane-disrupting antifungal. Surprisingly, BaraA mutant males but not females display an erect wing phenotype upon infection. Here, we characterize a new antifungal immune effector downstream of Toll signalling, and show it is a key contributor to the Drosophila antimicrobial response.


Assuntos
Antifúngicos/farmacologia , Beauveria/efeitos dos fármacos , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Micoses/tratamento farmacológico , Peptídeos/farmacologia , Animais , Beauveria/crescimento & desenvolvimento , Beauveria/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Masculino , Micoses/imunologia , Micoses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...